A Stable Copper Carbonyl Complex

By M. I. BRUCE* and A. P. P. OSTAZEWSKI (Department of Inorganic Chemistry, The University, Bristol BS8 1TS)

Summary The preparation and properties of the first airand heat-stable copper carbonyl complex, [HB(pz)_s]Cu-(CO), are described.

ADDITION of copper(I) chloride to a solution of $K[HB(pz)_3]$ (pz = pyrazolyl, $C_3H_3N_2$), while passing a stream of carbon monoxide through the suspension, affords the highly crystalline, white, $[HB(pz)_3]Cu(CO)$, (I).[†] This compound is stable in air for weeks, and resists heating to over 100°, and thus contrasts with the labile cyclopentadienyl complex $(\pi-C_5H_5)Cu(CO)$ (II).^{1,2} Similar increases in stability on replacement of $\pi-C_5H_5$ by HB(pz)₃ have been reported before with some molybdenum carbonyl complexes.³

Complex (I) is very soluble in light petroleum, such solutions showing the characteristic v(BH) of the ligand at 2465 cm⁻¹, together with a single sharp v(CO) at 2083 cm⁻¹

[cf. ν (CO) in (II) at 2093 cm⁻¹].⁸ On heating to 165°, complex (I) decarbonylates to form Cu₂[HB(pz)₈]₂, also formed by the direct reaction between K[HB(pz)₅] and copper(I) halides in the absence of carbon monoxide. This complex is dimeric both in solution and in the gaseous state, the mass spectrum exhibiting a strong parent ion cluster centred on m/e 553.

Complex (I) reacts with many ligands, L, [e.g., $L = PR_3$, P(OR)₃, AsR₃, SbR₃, RNC, acetylenes, olefins, etc.] to give [HB(pz)₃]CuL with simultaneous evolution of carbon monoxide. As expected, the phosphite and isocyanide derivatives are both considerably more stable thermally than their cyclopentadienyl analogues.^{2,4} Passage of carbon monoxide into a suspension of the dimer in light petroleum results in a slow reaction to give the carbonyl (I); selected ligands have also been found to react similarly.

† All new compounds have been characterised by satisfactory analyses.

Although similarities between the $[HB(pz)_3]^-$ and the $C_5H_5^-$ ligands have been emphasised in the past, we feel that the stability of complex (I) results primarily from strengthening of the Cu-CO bond by back-bonding from an electron-rich copper atom resulting from the strong σ -donor character of the pyrazolylborate ligand. With the hydrotris(3,5-dimethylpyrazolyl)borate complex, dec. 186°, ν (CO) occurs at 2066 cm⁻¹, as expected for an even stronger electron donor. In the light of these results, $(\pi$ -C₅Me₅)Cu-(CO) also can be expected to be more stable than the unsubstituted cyclopentadienyl derivative.

(Received 31st July 1972; Com. 1329.)

¹G. Rucci, C. Zanzottera, M. P. Lachi, and M. Camia, Chem. Comm., 1971, 652; R. Mason and G. Rucci, Chem. Comm., 1971, 1132; ¹ G. Rucci, C. Zanzottera, M. F. Lacin, and M. Canna, Chem. Comm., 1971.
² F. A. Cotton and T. J. Marks, J. Amer. Chem. Soc., 1970, 92, 5114.
³ S. Trofimenko, J. Amer. Chem. Soc., 1969, 91, 588.
⁴ T. Saegusa, Y. Ito, and S. Tomita, J. Amer. Chem. Soc., 1971, 93, 5656.